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Abstract

The PAC-Bayesian framework has proven to be
a useful tool to obtain nonvacuous generalization
bounds for modern learning algorithms, such as
overparameterized neural networks. A known
heuristic to tighten such bounds is to use data-
dependent priors. In this paper, we show how
the information-theoretically motivated random-
subset setting introduced by Steinke & Zakyn-
thinou (2020) enables the derivation of PAC-
Bayesian bounds that naturally involve a data-
dependent prior. We evaluate these bounds for
neural networks trained on MNIST and Fashion-
MNIST, and study their dependence on the train-
ing set size, the achieved training accuracy, and
the effect of randomized labels.

1. Introduction
Recently, interest in the use of information-theoretic tech-
niques for bounding the loss of learning algorithms has
surged. While the first results of this flavor can be traced
to the probably approximately correct (PAC)-Bayesian ap-
proach (McAllester, 1998; Catoni, 2007) (see also (Guedj,
2019) for a recent review), the connection between loss
bounds and classical information-theoretic measures was
made explicit in the works of Russo & Zou (2016) and Xu
& Raginsky (2017), where bounds on the average popu-
lation loss were derived in terms of the mutual informa-
tion between the training data and the output hypothesis.
Since then, these average-loss bounds have been tight-
ened (Bu et al., 2020; Negrea et al., 2019). Furthermore, the
information-theoretic framework has also been successfully
applied to derive tail-probability bounds on the population
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loss (Bassily et al., 2018; Esposito et al., 2019).

In the PAC-Bayesian framework, one considers stochastic
classifiers where, for each prediction, a hypothesis W is
drawn from a so-called posterior distribution PW |Z given
the training data Z. The population loss of the stochastic
classifier characterized by the posterior is then bounded by
a function of the Kullback-Leibler (KL) divergence between
the posterior and a reference measure, usually called a prior.
To obtain tight bounds, selecting a good prior is key. While
the prior is traditionally assumed to be data-independent,
this is not strictly necessary for PAC-Bayes bounds to hold
(Ambroladze et al., 2006; Rivasplata et al., 2020; Dziugaite
et al., 2020). A known heuristic for improving the quality
of the bound is to use all of Z to select PW |Z , but only
a part of it, ZB , to evaluate the bound on the population
loss. Then, the remaining part, ZP , can be used freely to
select a data-dependent prior QW |ZP

(Ambroladze et al.,
2006). Recently, Dziugaite et al. (2020) showed that for
some learning settings, such a data-dependent prior may be
necessary to enable nonvacuous bounds, and empirically
demonstrated its usefulness for neural networks (NN).

The purpose of this paper is to derive and evaluate PAC-
Bayesian bounds on the test loss for the random-subset
setting introduced by Steinke & Zakynthinou (2020), and
show how this naturally leads to a procedure for selecting
data-dependent priors. In the random-subset setting, 2n
training samples Z̃ = (Z̃1, . . . , Z̃2n) are available, with all
entries of Z̃ being drawn independently from some distribu-
tion PZ on an instance space Z . However, only a randomly
selected subset of cardinality n is actually used for train-
ing. It is selected as follows: let S = (S1, . . . , Sn) be
an n-dimensional random vector, the elements of which are
drawn independently from a Bern(1/2) distribution and are
independent of Z̃. Then, for i = 1, . . . , n, the ith training
sample inZ(S) is Zi(Si) = Z̃i+Sin. Based on this training
set, a hypothesis W ∈ W is chosen through a randomized
learning algorithm PW |Z̃S = PW |Z(S), which is a condi-

tional distribution onW given (Z̃,S) that gives rise to the
Markov property (Z̃,S)−Z(S)−W . Let LZ(S)(W ) =
1
n

∑n
i=1 `(W,Zi(Si)) denote the training loss, where `(·, ·)

is a loss function, which throughout this paper is assumed
to have range [0, 1]. Furthermore, let S̄ denote the modulo-
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2 complement of S. Then LZ(S̄)(W ) can be interpreted
as a test loss, since W is independent of Z(S̄). Note that
the average over (Z̃,S) of the test loss is the population
loss LPZ

(W ) = EPZ̃S
[LZ(S̄)(W )] = EPZ

[`(W,Z)]. For
the random-subset setting, bounds on the average population
loss are derived in (Steinke & Zakynthinou, 2020) in terms
of the conditional mutual information (CMI) I(W ;S|Z̃)
between the chosen hypothesis W and the random vector S
given Z̃. These bounds are always finite, since I(W ;S|Z̃)
is never larger than n bits. In contrast, the bounds ob-
tained in (Xu & Raginsky, 2017) depend on the mutual
information I(W ;Z), a quantity that can be unbounded
if W reveals too much about the training set Z. The dif-
ference between bounds depending on I(W ;Z) and those
given in terms of I(W ;S|Z̃) can also be explained from
a PAC-Bayesian perspective in terms of the prior distribu-
tion. While I(W ;Z) compares the posterior PW |Z to the
oracle prior PW , which is the marginalization of PW |ZPZ

over PZ , the CMI I(W ;S|Z̃) compares PW |Z(S) to PW |Z̃ ,
which is the marginalization of PW |Z(S)PS = PW |Z̃SPS

over PS . Thus, the distribution that plays the role of the
prior in the CMI bound is adapted to the data by default.

The following bounds on the average population loss are
derived in (Steinke & Zakynthinou, 2020, Thm. 2):

EPWZ̃S
[LPZ

(W )]≤EPWZ̃S

[
LZ(S)(W )

]
+

√
2I(W ;S|Z̃)

n
(1)

EPWZ̃S
[LPZ

(W )]≤2EPWZ̃S

[
LZ(S)(W )

]
+

3I(W ;S|Z̃)

n
.

(2)

We will refer to bounds like (1), where the n-dependence
is of the form

√
IM(n)/n for some information mea-

sure IM(n), as slow-rate bounds. We refer to bounds
like (2), which have an IM(n)/n-dependence, as fast-rate
bounds. We note that the results in (Steinke & Zakynthinou,
2020, Thm. 2) pertain to the average population loss, and
no PAC-Bayesian bounds are provided.

Contributions In this paper, we derive PAC-Bayesian ver-
sions of (1) and (2). We then use these bounds to charac-
terize the test loss of NNs used to classify images from the
MNIST and Fashion-MNIST data sets. To obtain nonvacu-
ous bounds for NNs, it is crucial to choose a data-dependent
prior (Dziugaite et al., 2020). The random-subset setting
provides a natural way to do this by choosing the prior as an
approximation of PW |Z̃ . Specifically, we set the posterior to
be an isotropic Gaussian distribution centered on the output
the output of stochastic gradient descent (SGD) on the train-
ing set Z(S). For the prior, we form a number of subsets

of Z̃, and set the prior as an isotropic Gaussian centered
around the average of the output of SGD on the different
subsets. Our numerical results reveal that the bounds are
nonvacuous, and in line with previously reported results for
similar setups (Dziugaite et al., 2020). Furthermore, we
study the impact of the training set size and the target train-
ing loss on our bounds and the KL divergence they contain.
We find that, for higher training losses, the KL divergence
decreases with n, while it increases for lower losses. For
fixed n, the bounds initially improve as the training loss de-
creases, but then grow rapidly once the training loss reaches
a certain point. We note that these observations hold for our
specific choice of prior, posterior, and training algorithm,
and may not be true in general.

2. PAC-Bayesian Random-Subset Bounds
We now present the PAC-Bayesian versions of the aver-
age bounds in (1) and (2). Their derivations, which are
detailed in Appendix A, are based on the use of exponen-
tial inequalities—a framework through which the average
bounds (1) and (2) can readily be recovered. Furthermore,
single-draw bounds on the test loss, also known as pointwise
or de-randomized PAC-Bayesian bounds (Viallard et al.,
2021), can also be derived. These results are deferred to
Appendix A.

Theorem 1 Consider the random-subset setting introduced
in Section 1. Let W ∈ W be distributed according
to PW |Z(S). Let λ, γ > 0 be constants such that λ(1 −
γ) + (eλ − 1 − λ)(1 + γ2) ≤ 0. Furthermore, let QW |Z̃
be a data-dependent conditional prior such that the distri-
butions QW |Z̃PZ̃PS and PWZ̃S = PW |Z̃SPZ̃PS are ab-
solutely continuous with respect to each other. Then, with
probability at least 1− 2δ over PZ̃S , the PAC-Bayesian test
loss is bounded as

EPW |Z̃S

[
LZ(S̄)(W )

]
≤ min{Bslow, Bfast} (3)

where Bslow and Bfast are given by

Bslow =EPW |Z̃S

[
LZ(S)(W )

]
+

√
2

n− 1

(
D(PW |Z̃S ||QW |Z̃) + log

√
n

δ

)
(4)

Bfast =γ EPW |Z̃S

[
LZ(S)(W )

]
+

(
D(PW |Z̃S ||QW |Z̃) + log 1

δ

)
λn

. (5)

Note that the bound in (3) is on the test loss instead of the
population loss. One can obtain population-loss bounds
by adding a penalty term to (3), as shown in (Hellström &
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Table 1. The estimated test loss as well as the slow-rate (4) and fast-rate (5) bounds on the test loss, obtained after training with SGD for
100 epochs, for the different architectures and data sets . The confidence intervals correspond to two standard deviations.

FCNN, MNIST FCNN, Fashion-MNIST LeNet-5, MNIST LeNet-5, Fashion-MNIST

Test loss 0.098± 0.006 0.265± 0.057 0.045± 0.006 0.301± 0.051
Slow-rate bound 0.213± 0.010 0.356± 0.041 0.291± 0.018 0.437± 0.030
Fast-rate bound 0.198± 0.012 0.471± 0.098 0.171± 0.016 0.557± 0.076

Durisi, 2020, Thm. 2). However, when comparing bounds to
the empirical performance of an algorithm, the population
loss is unknown. Thus, in practice, one has to resort to
evaluating a test loss.

The bounds in (4) and (5) are data-dependent, i.e., they de-
pend on the specific instances of Z̃ and S. This makes them
computable for a given data set. They can be turned into
data-independent bounds that are functions of the average
of the KL divergences appearing in (4) and (5), at the cost
of a worse dependence on the confidence parameter δ. Al-
ternatively, one can obtain bounds that have a more benign
dependence on δ if one allows the bounds to depend on
sufficiently high moments of the KL divergences, or if one
replaces these measures by quantities such as conditional
maximal leakage or conditional α-divergence. See (Hell-
ström & Durisi, 2020) for further discussion.

Under the assumption that the algorithm always achieves
zero training loss, the constants in Theorem 1 can be sharp-
ened. Furthermore, the average bound in (2) can be tight-
ened by considering a sample-wise decomposition of the
error. We present these extensions in Appendix A.

3. Experiments
We numerically evaluate the bounds in (4) and (5) for
some NNs. Specifically, we consider the convolutional
network LeNet-5 and a fully connected NN (FCNN) with
two hidden layers of width 600, trained on either MNIST
or Fashion-MNIST using SGD. We set the loss function
to be the classification error. To evaluate the bounds, we
set λ = 1/2.98 and γ = 1.795. We select the poste-
rior PW |Z̃S to be N (W | µ1, σ

2
1Id), where Id denotes

the d× d identity matrix and µ1 contains the d NN weights
found by SGD on the training set Z(S), a randomly chosen
subset of n samples from the 2n available in Z̃. The param-
eter σ2

1 is chosen to be as large as possible, to some finite
precision, so that the training accuracy of the stochastic NN
with weights drawn from N (W | µ1, σ

2
1Id) differs by no

more than a specified threshold from the training accuracy
of the deterministic NN with weights µ1.

The marginal PW |Z̃ can in principle be computed by aver-
aging over all 2n possible values of S. While such an exact
computation is prohibitively expensive, this indicates a prin-
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Figure 1. The estimated test loss, as well as the slow-rate (4) and
fast-rate (5) bounds on the test loss, for LeNet-5 trained on MNIST
with SGD until a training loss of 0.05 is reached. The shaded
regions correspond to two standard deviations.

cipled way to choose a prior by approximately performing
this procedure. To choose the prior, we therefore form a
number of subsets of Z̃ and train an NN with SGD on each,
denoting the average of the output weights as µ2. We then
find σ̃2

2 so that the accuracy on Z̃ for the stochastic NN with
weights drawn from N (W | µ2, σ̃

2
2Id) and the determinis-

tic NN with weights µ2 differs by no more than a specified
threshold. Based on σ̃2

2 , we create a set of candidate values
for σ2

2 . We then set QW |Z̃ = N (W | µ2, σ
2
2Id), where σ2

2

is chosen so as to minimize the bound, typically leading
to σ2

1 = σ2
2 . For this final bound to be valid, we take a

union bound over the set of candidate values. A detailed de-
scription of the experimental setup and additional results are
given in Appendix B. While we focus on NNs, we note that
the procedure given here can be used to obtain bounds for
perturbed versions of any deterministic parametric hypothe-
sis. For such bounds to be meaningful, the hypothesis needs
to be relatively insensitive to the added Gaussian noise, so
that the training loss of the perturbed hypothesis is not too
different from the unperturbed training loss.

For each setting, we perform simulations over 10 instances
of S. Our results are obtained by setting δ ≈ 0.001 as the
confidence parameter. However, due to the union bound
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Figure 2. Same as Figure 1, but for Fashion-MNIST.

over the set of candidates for σ2
2 , the presented bounds

hold with probability at least 95%. The test losses and
training losses are computed empirically by averaging over
the performance of 5 NNs whose weights are sampled
from N (W | µ1, σ

2
1Id). In Table 1, we present our bounds,

along with the actual test losses, for several architectures
and data sets. The training losses are not given, since they
are virtually indistinguishable from the test losses for all
of the settings we consider. The quantitative values of the
bounds in Table 1 are in line with previously reported results
for a similar setup (Dziugaite et al., 2020, Fig. 4), where a
similar approach was used. The key differences is that the
posterior therein is allowed to depend on the entire data set
Z̃, whereas the training loss and prior depend on randomly
selected disjoint subsets of Z̃. In contrast, in the random-
subset setting considered in this paper, the prior is allowed
to depend on the entire data set Z̃, whereas the training
loss and posterior depend only on a randomly selected por-
tion Z(S) of Z̃. For the MNIST data set, we see that the
fast-rate bound is tighter than its slow-rate counterpart. For
the more challenging Fashion-MNIST data set, the slow-rate
bound is tighter. This is due to the fact that high training
losses and large information measures penalize the fast-rate
bound due to its larger constant factors.

In Figure 1, we vary the training set size n and train LeNet-
5 on MNIST using SGD with momentum until a training
loss of 0.05 is reached. For this setting, the fast-rate bound
outperforms its slow-rate counterpart. For small training
set sizes, our bounds are conservative. In Figure 2, we in-
stead train LeNet-5 on the Fashion-MNIST data set until a
training loss of 0.15 is reached. For this more challenging
data set, the bounds are weaker, and the slow-rate bound
tends to slightly outperform the fast-rate bound. This can be
attributed to higher values of the training loss and relative
entropy being obtained since the data set is more challeng-
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Figure 3. The n-dependence of the KL divergence in (4) and (5)
for various target training losses.

ing. We note that the difference between the slow-rate and
fast-rate bounds is less pronounced than in Table 1, where
SGD without momentum is used. The results also display a
lot more variance, especially for smaller sample sizes.
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Figure 4. The estimated test loss, as well as the slow-rate (4) and
fast-rate (5) bounds, with n = 3 · 104 as a function of the targeted
training loss for the underlying deterministic NN.

For the remaining experiments, we focus on LeNet-5 and
MNIST. In Figure 3, we examine the n-dependence of the
KL divergence in (4) and (5). For simplicity, we set σ1 =
σ2 = 0.01. One factor that has a significant impact on the
dependence is the target training loss for the underlying
deterministic NN. For a target of 0.05, the KL divergence
decreases with n, while it increases for a target of 0.001.
For an intermediate target of 0.015, it is roughly constant
over the studied range.
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To more directly probe the effect on our bounds of the target
training loss of the underlying deterministic NN, in Fig-
ure 4, we fix the training set size n = 3 · 104 and vary the
target training loss.While the bounds track the actual test
loss reasonably well for targeted training losses down to
around 0.02, the bounds increase rapidly after this point,
whereas the actual test loss keeps on decreasing. This obser-
vation, which is in line with what is reported in (Dziugaite
et al., 2020), illustrates that our PAC-Bayes bounds become
vacuous when SGD is run until a very small training error
is achieved. We empirically show in Appendix B.3 that
this undesired behavior can be mitigated by selecting higher
values for σ1 and σ2, at the cost of a higher test loss.
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bounds via Rènyi f -divergences and maximal leakage.
arXiv, Dec. 2019. URL http://arxiv.org/abs/
1912.01439.

Guedj, B. A primer on PAC-Bayesian learning. arXiv,
Jan. 2019. URL http://arxiv.org/abs/1901.
05353.

Haghifam, M., Negrea, J., Khisti, A., Roy, D., and Dziugaite,
G. Sharpened generalization bounds based on conditional
mutual information and an application to noisy, iterative
algorithms. arXiv, Apr. 2020. URL http://arxiv.
org/abs/2004.12983.

Hellström, F. and Durisi, G. Fast-rate loss bounds via con-
ditional information measures with applications to neural
networks. In Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Melbourne, Australia, July 2021.

Hellström, F. and Durisi, G. Generalization bounds via
information density and conditional information density.
IEEE J. Sel. Areas Inf. Theory, 1(3):824–839, Dec. 2020.

McAllester, D. Some PAC-Bayesian theorems. In Proc.
Conf. Learn. Theory (COLT), Madison, WI, July 1998.

Negrea, J., Haghifam, M., Dziugaite, G., Khisti, A., and Roy,
D. Information-theoretic generalization bounds for SGLD
via data-dependent estimates. In Proc. Conf. Neural Inf.
Process. Syst. (NeurIPS), Vancouver, Canada, Dec. 2019.

Polyanskiy, Y. and Wu, Y. Lecture Notes On Informa-
tion Theory. 2019. URL http://www.stat.yale.
edu/%7Eyw562/teaching/itlectures.pdf.

Rivasplata, O., Kuzborskij, I., Szepesvari, C., and Shawe-
Taylor, J. PAC-Bayes analysis beyond the usual bounds.
In Proc. Conf. Neural Inf. Process. Syst. (NeurIPS), pp.
16833–16845, Vancouver, Canada, Dec. 2020.

Rodrı́guez-Gálvez, B., Bassi, G., Thobaben, R., and
Skoglund, M. On random subset generalization error
bounds and the stochastic gradient Langevin dynamics al-
gorithm. In Inf. Theory Workshop (ITW), Riva del Garda,
Italy, 4 2020.

Russo, D. and Zou, J. Controlling bias in adaptive data
analysis using information theory. In Proc. Artif. Intell.
Statist. (AISTATS), Cadiz, Spain, May 2016.

Steinke, T. and Zakynthinou, L. Reasoning about general-
ization via conditional mutual information. In Proc. Conf.
Learn. Theory (COLT), Graz, Austria, July 2020.

Viallard, P., Germain, P., Habrard, A., and Morvant, E.
A general framework for the derandomization of PAC-
Bayesian bounds, 2021. URL https://arxiv.org/
abs/2102.08649.

Wainwright, M. J. High-Dimensional Statistics: a Non-
Asymptotic Viewpoint. Cambridge Univ. Press, Cam-
bridge, U.K., 2019.

Xu, A. and Raginsky, M. Information-theoretic analysis of
generalization capability of learning algorithms. In Proc.
Conf. Neural Inf. Process. Syst. (NeurIPS), Long Beach,
CA, Dec. 2017.

Zhou, R., Tian, C., and Liu, T. Individually conditional
individual mutual information bound on generalization er-
ror, 2020. URL https://arxiv.org/abs/2012.
09922.

Zhou, W., Veitch, V., Austern, M., Adams, R., and Orbanz,
P. Non-vacuous generalization bounds at the ImageNet
scale: a PAC-Bayesian compression approach. In Proc.
Int. Conf. Learn. Representations (ICLR), New Orleans,
LA, USA, May 2019.



Data-Dependent PAC-Bayesian Bounds in the Random-Subset Setting

A. Proofs and Additional Results
In this section, we prove Theorem 1 and present some ad-
ditional results. First, we explicitly state and prove the
exponential inequalities used in the proof of Theorem 1.

Theorem 2 Consider the random-subset setting introduced
in Section 1. Let W ∈ W be distributed according to
PW |Z(S). Let λ, γ > 0 be constants such that λ(1 − γ) +

(eλ − 1 − λ)(1 + γ2) ≤ 0. Furthermore, let QW |Z̃ be a
data-dependent conditional prior such that the distributions
QW |Z̃PZ̃PS and PWZ̃S = PW |Z̃SPZ̃PS are absolutely
continuous with respect to each other. Then, the following
inequalities hold:

EPWZ̃S

[
exp

(
λn
(
LZ(S̄)(W )− γLZ(S)(W )

)
− log

dPWZ̃S

dQW |Z̃PZ̃S

)]
≤ 1. (6)

EPWZ̃S

[
exp

(
n− 1

2
(LZ(S̄)(W )− LZ(S)(W ))2

− log
√
n− log

dPWZ̃S

dQW |Z̃PZ̃S

)]
≤ 1. (7)

Proof We begin by proving an exponential inequality for a
binary random variable X satisfying P (X = a) = P (X =
b) = 1/2 where a, b ∈ [0, 1]. Let X̄ = b if X = a and
X̄ = a if X = b. Finally, let c = eλ − 1− λ. Then,

E
[
eλ(X−γX̄)

]
≤E

[
1 + λ

(
X−γX̄

)
+ c

(
X−γX̄

)2]
= 1 +

λ(1− γ)

2
(a+ b) +

c

2
(a− γb)2

+
c

2
(b− γa)

2
.

(8)

Here, the first inequality follows because ey ≤ 1 + y +
cy2/λ2 for all y ≤ λ. Expanding the squares and removing
negative terms, we find that

E
[
eλ(X−γX̄)

]
≤ 1 + λ(1− γ) + (eλ − 1− λ)(1 + γ2)

≤ 1, (9)

where (9) follows from our assumption on λ, γ. LetQWZ̃ =
QW |Z̃PZ̃ , and apply (9) with X = `(w,Zi(S̄i)) and X̄ =

`(w,Zi(Si)) for some fixed w and z̃. It follows that

EQWZ̃PS

[
eλn
(
LZ(S̄)(W )−γLZ(S)(W )

)]
= EQWZ̃

[
n∏
i=1

EPSi

[
eλ
(
`(W,Zi(S̄i))−γ`(W,Zi(Si))

)]]
≤ 1. (10)

The inequality (6) now follows after a change of measure
to PWZ̃S (Polyanskiy & Wu, 2019, Prop. 17.1).

We obtain (7) as follows. Let (w, z̃) be fixed, and con-
sider the random variable ∆(S) = Lz(S̄)(w)− Lz(S)(w).
Due to the boundedness of `(·, ·) and the symmetry prop-
erty ∆(S) = −∆(S̄), it follows that ∆(S) is 1/

√
n-sub-

Gaussian with mean 0 under PS . Applying (Wainwright,
2019, Thm. 2.6.(IV)) with λ = 1− 1/n, we conclude that

EPS

[
exp

(
n− 1

2
(Lz(S̄)(w)− Lz(S)(w))2

)]
≤ √n.

(11)

Taking the expectation with respect to QW |Z̃PZ̃ , changing
measure to PWZ̃S , and rearranging terms, we obtain (7). �

Equipped with Theorem 2, we now prove Theorem 1.

Proof of Theorem 1 To derive (5), we first apply Jensen’s
inequality in (6) with respect to PW |Z̃S to get

EPZ̃S

[
exp

(
EPW |Z̃S

[
λn
(
LZ(S̄)(W )− γLZ(S)(W )

)]
−D(PW |Z̃S ||QW |Z̃)

)]
≤ 1. (12)

We now use Markov’s inequality in the following form.
Let U ∼ PU be a nonnegative random variable satisfy-
ing E[U ] ≤ 1. Then,

PU [U ≤ 1/δ] ≥ 1− E[U ] δ ≥ 1− δ. (13)

Applying (13) to (12) we find that, with probability at
least 1− δ under PZ̃S ,

exp

(
EPW |Z̃S

[
λn
(
LZ(S̄)(W )− γLZ(S)(W )

)]
−D(PW |Z̃S ||QW |Z̃)

)
≤ 1

δ
. (14)

Taking the logarithm and reorganizing terms, we obtain (5).
By the same procedure, starting from (7) instead of (6), we
obtain (4) after an additional use of Jensen’s inequality. �

Theorem 2 does not only allow us to derive PAC-Bayesian
bounds, but also bounds on the average and single-draw test
loss. We present these bounds in the following corollary.
We note that, while (7) can be used to obtain an average
bound, this includes a suboptimal dependence on n that
can be avoided by using an alternative exponential inequal-
ity (Hellström & Durisi, 2020, Cor. 5). Hence, we do not
present any slow-rate average bound here.

Corollary 3 Consider the setting of Theorem 2. Then, the
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average population loss is bounded by

EPWZ̃S
[LPZ

(W )] ≤ γ EPWZ̃S

[
LZ(S)(W )

]
+

EPZ̃S

[
D(PW |Z̃S ||QW |Z̃)

]
λn

. (15)

Furthermore, with probability at least 1 − 2δ over PWZ̃S ,
the single-draw test loss is bounded by

LZ(S̄)(W ) ≤ min{BSD
slow, B

SD
fast} (16)

where BSD
slow and BSD

fast are defined as

BSD
fast = LZ(S)(W )

+

√√√√ 2

n− 1

(
log

dPWZ̃S

dQW |Z̃PZ̃S

+ log

√
n

δ

)
(17)

BSD
fast = γLZ(S)(W )+

(
log

dPWZ̃S

dQW |Z̃PZ̃S
+ log 1

δ

)
λn

. (18)

Proof First, we apply Jensen’s inequality to (6) to move
the expectation inside the exponential. We obtain (15) by
taking the logarithm and reorganizing terms. To derive (18),
we apply (13) to (6) to conclude that, with probability at
least 1− δ under PWZ̃S ,

exp

(
λn
(
LZ(S̄)(W )−γLZ(S)(W )

)
− log

dPWZ̃S

dQW |Z̃PZ̃S

)
≤ 1

δ
. (19)

We obtain (18) by reorganizing terms. Similarly, (17) fol-
lows by applying (13) to (7) and reorganizing terms. �

Setting QW |Z̃ = PW |Z̃ , γ = 2 and λ = 1/3 in (15), we
recover the CMI bound in (Steinke & Zakynthinou, 2020).

As illustrated in Corollary 4 below, for the special case
where QW |Z̃ = PW |Z̃ , the bound on the average popu-
lation loss in (15) can be tightened by replacing the CMI
EPZ̃S

[
D(PW |Z̃S ||PW |Z̃)

]
= I(W ;S|Z̃) with a sum of

samplewise CMIs I(W ;Si|Z̃i, Z̃i+n).

Corollary 4 Consider the setting of Theorem 2, with the
additional assumption that QW |Z̃ = PW |Z̃ . Then, the
average population loss is bounded by

EPWZ̃S
[LPZ

(W )] ≤ γ EPWZ̃S

[
LZ(S)(W )

]
+

n∑
i=1

I(W ;Si|Z̃i, Z̃i+n)

λn
. (20)

Proof Consider a fixed w ∈ W and z̃ ∈ Z2n. By (9),

EPSi

[
eλ(`(w,Zi(S̄i))−γ`(w,Zi(Si)))

]
≤ 1. (21)

Let Z̃±i denote the pair (Z̃i, Z̃i+n) and let PSi|wz̃±i denote
PSi|W=w,Z̃±i =z̃±i

for some fixed w, z̃±i . Note that Zi(Si)

depends on Z̃ only through Z̃±i . By changing measure to
PSi|wz̃±i we obtain

EPSi

[
eλ(`(w,Zi(S̄i))−γ`(w,Zi(Si)))

]
= EP

Si|wz̃
±
i

eλ(`(w,Zi(S̄i))−γ`(w,Zi(Si)))−log

dP
Si|wz̃

±
i

dPSi


≤ 1. (22)

By Jensen’s inequality and taking the logarithm, we obtain

EP
Si|wz̃

±
i

[
`(w,Zi(S̄i))

]
≤ γ EP

Si|wz̃
±
i

[`(w,Zi(Si))] +
1

λ
EPSi|wz̃

[
log

dPSi|wz̃±i
dPSi

]

= γ EP
Si|wz̃

±
i

[`(w,Zi(Si))] +
D(PSi|wz̃±i ||PSi

)

λ
. (23)

The desired result follows by noting that, by marginalizing,

EPWZ̃S
[LPZ

(W )]=

n∑
i=1

EP
WZ̃
±
i

[
EP

Si|WZ̃
±
i

[
`(W,Zi(S̄i))

n

]]
(24)

and applying (23) to each term in the sum in (24). �

The bound in (Rodrı́guez-Gálvez et al., 2020, Prop. 3) (also
found in (Zhou et al., 2020, Cor. 1)), which is a tightening
of (Haghifam et al., 2020, Thm. 3.1), depends on a sum

of square roots
√
I(W ;Si|Z̃i, Z̃i+n), whereas our bound

does not have a square root. Since I(W ;Si|Z̃i, Z̃i+n) ≤
H(Si) = log(2), it follows that I(W ;Si|Z̃i, Z̃i+n) <√
I(W ;Si|Z̃i, Z̃i+n). This implies that our bound im-

proves the dependence on I(W ;Si|Z̃i, Z̃i+n) at the cost
of greater constants. By (Rodrı́guez-Gálvez et al., 2020,
Lem. 3) (or (Zhou et al., 2020, Lem. 2)), we also have
I(W ;Si|Z̃i, Z̃i+n) ≤ I(W ;Si|Z̃). Thus, the samplewise
bounds presented in Corollary 4 and Corollary 7 are tighter
than those reported in (Hellström & Durisi, 2021, Cor. 3,
Cor. 6).

For the so-called interpolating setting, where LZ(S)(W ) =
0, one can obtain a different exponential inequality than the
one in (6), under the additional assumption that QW |Z̃ =
PW |Z̃ . This leads to tighter bounds than the ones in (5),
(15), and (18). Specifically, in these alternative bounds,
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the factor λ can be set to log 2 ≈ 0.69. In contrast, any
λ in Theorem 2, regardless of the value of γ, must satisfy
λ2−4(eλ−1)(eλ−1−λ) ≥ 0, which implies λ < 0.37. We
first prove the following inequality, the derivation of which
is similar to part of the proof of (Steinke & Zakynthinou,
2020, Thm. 5.7).

Theorem 5 Consider the random-subset setting introduced
in Section 1. Let W ∈ W be distributed according to
PW |Z(S), and assume that LZ(S)(W ) = 0 a.s. for W ∼
PW |Z(S). Then,

EPWZ̃S

[
exp
(
n log 2 · LZ(S̄)(W )− ı(W,S|Z̃)

)]
≤ 1.

(25)

Proof Let λ, γ > 0. Then,

EPWZ̃S

[ n∏
i=1

(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

+
1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
= EPWZ̃PS

[ n∏
i=1

eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

]
. (26)

It follows from (26) that

EPWZ̃PS

[
en(λLZ(S̄)(W )−γLZ(S)(W ))

]
= EPWZ̃S

[ n∏
i=1

(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

+
1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
. (27)

We now change measure to PWZ̃S to conclude that

EPWZ̃S

[
en(λLZ(S̄)(W )−γLZ(S)(W ))−ı(W,S|Z̃)

]
= EPWZ̃S

[ n∏
i=1

(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

+
1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
. (28)

We now use the interpolating assumption and set λ = log 2.
If `(W,Zi(S̄i)) = 0, (25) holds trivially for every γ. If
`(W,Zi(S̄i)) > 0, we let γ → ∞. This, together with the
assumption that `(W,Zi(S̄i)) ∈ [0, 1], implies (25). �

Using Theorem 5, we can derive bounds that are analogous
to those in (5), (15), and (18). We present these bounds
below without proof, since they can be established following
steps similar to the ones used to prove (5), (15), and (18).

Corollary 6 Consider the setting of Theorem 5. Then, the
average population loss is bounded by1

EPWZ̃S
[LPZ

(W )] ≤ I(W ;S|Z̃)

n log 2
. (29)

Furthermore, with probability at least 1− δ over PZ̃S , the
PAC-Bayesian population loss is bounded by

EPW |Z̃S

[
LZ(S̄)(W )

]
≤
D(PW |Z̃S ||PW |Z̃) + log 1

δ

n log 2
.

(30)
Finally, with probability at least 1−δ over PWZ̃S , the single-
draw population loss is bounded by

LZ(S̄)(W ) ≤ ı(W,S|Z̃) + log 1
δ

n log 2
. (31)

Finally, we present a samplewise average bound for the in-
terpolating setting, which is tighter than (29) by (Haghifam
et al., 2020, Rem. 3.5). This result tightens (Rodrı́guez-
Gálvez et al., 2020, Prop. 3) and (Zhou et al., 2020, Cor. 1)
for the interpolating setting.

Corollary 7 Consider the setting of Theorem 5. Then, the
average population loss is bounded by

EPWZ̃S
[LPZ

(W )] ≤
n∑
i=1

I(W ;Si|Z̃i, Z̃i+n)

n log 2
. (32)

Proof Let λ, γ > 0. For all i, by arguing as in (26)—(28),

EP
WZ̃
±
i

Si

[
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))−ı(W,Si|Z̃i,Z̃i+n)

]
= EPWZ̃S

[(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

+
1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
. (33)

Here, ı(W,Si|Z̃i, Z̃i+n) = log
dP

WZ̃
±
i

Si

dP
WZ̃
±
i
PSi

. Next, we

use the interpolating assumption and set λ = log 2. If
`(W,Zi(S̄i)) > 0, let γ →∞. Since `(W,Zi(S̄i)) ∈ [0, 1],
this implies that the right-hand side of (33) is at most 1. If
`(W,Zi(S̄i)) = 0, this holds trivially for every γ. Thus,

EP
WZ̃
±
i

Si

[
elog 2·`(W,Zi(S̄i))−ı(W,Si|Z̃i,Z̃i+n)

]
≤ 1. (34)

Using Jensen’s inequality and reorganizing terms, we obtain

EP
WZ̃
±
i

Si

[
`(W,Zi(S̄i))

]
≤ I(W ;Si|Z̃i, Z̃i+n)

log 2
. (35)

1Since I(W ;S|Z̃) ≤ log 2n for all distributions, the constant
log 2 cannot be improved.
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Table 2. The LeNet-5 architecture used in Section 3.
Convolutional layer, 20 units, 5× 5 size, linear activation, 1× 1 stride, valid padding
Max pooling layer, 2× 2 size, 2× 2 stride
Convolutional layer, 50 units, 5× 5 size, linear activation, 1× 1 stride, valid padding
Max pooling layer, 2× 2 size, 2× 2 stride
Flattening layer
Fully connected layer, 500 units, ReLU activation
Fully connected layer, 10 units, softmax activation

The result now follows because

EPWZ̃S
[LPZ

(W )] =
1

n

n∑
i=1

EP
WZ̃
±
i

S

[
`(W,Zi(S̄i))

]
.�

(36)

B. Experiment Details and Additional Results
B.1. Architectures

The LeNet-5 architecture used in Section 3 is described
in Table 2. While it differs from most implementations of
LeNet-5, it coincides with the architecture used by (Dziu-
gaite et al., 2020) and (Zhou et al., 2019). It has 431 080
parameters. For the binarized MNIST data set considered
in Table 3, the number of output units is instead 2, resulting
in a network with 427 072 parameters. The fully connected
neural network denoted by 6002 consists of an input layer
with 784 units, 2 fully connected layers with 600 units and
ReLU activations, followed by an output layer with 10 units
and softmax activations. It has 837 610 parameters.

B.2. Training procedures

We now provide additional details on the training proce-
dures described in Section 3. The initial weights of all the
networks used for each instance of Z(S) were set to the
same randomly selected values drawn from a zero-mean
normal distribution with standard deviation 0.01. All net-
works were trained using the SGD with a batch size of 512
on the cross-entropy loss, either with momentum and a fixed
learning rate or without momentum and a decaying learning
rate. First, we describe the details of SGD with momentum.
Unless otherwise stated, we used a learning rate of 0.001
for MNIST, and for Fashion-MNIST, we used 0.003. For
Figure 4, we used a learning rate of 3 · 10−4, leading to a
better resolution with respect to the obtained training losses.
In all experiments, the momentum parameter is set to 0.9.
For SGD without momentum we used a decaying learning
rate where the learning rate α for epoch E is given by

α(E) =
α0

1 + β · bE/E0c
. (37)

Here, α0 is the initial learning rate, β is the decay rate,
and E0 is the number of epochs between each decay. In all

experiments, we used α0 = 0.01, β = 2, and E0 = 20.

To choose σ1, we pick the largest value with one significant
digit (i.e., of the form a · 10−b with a ∈ [1 : 9] and b ∈ Z)
such that the absolute difference between the training loss
on Z(S) of the deterministic network with weights µ1 and
empirical average of the training loss of 5 NNs with weights
drawn independently from N (W | µ1, σ

2
1Id) was no larger

than some specified threshold. Unless otherwise stated, for
MNIST, we use a threshold of 0.05 for selecting σ1. For
Fashion-MNIST, we use a threshold of 0.10.

Next, µ2 is determined as follows. We form 10 subsets
of Z̃, each of size n. The first subset contains the first n
samples in Z̃, the last contains the last n samples in Z̃, and
the remaining subsets contain the linearly spaced sequences
in between. We then train one NN on each subset and denote
the average of the final weights of these networks by µ2. To
find σ2, we use as starting point the same procedure as for
determining σ1, but with µ2 in place of µ1 and the training
loss evaluated on all of Z̃. Let us call the value found by this
procedure σ′2 = a′ · 10−b

′
. Then, among the values of the

form a ·10−b with a ∈ [1 : 9] and b ∈ {b′−1, b′, b′+1}, we
choose σ2 to be the one that minimizes the bound on the test
loss. In all our experiments, this procedure resulted in σ2 =
σ1. To guarantee that the final bound holds with a given
confidence level, all 27 bounds resulting from all possible
choices of a and b need to hold with the same confidence
level. Since we consider both slow-rate and fast-rate bounds,
a total of 54 bounds need to hold simultaneously. We ensure
that this is the case via the union bound. Thus, if each
individual bound holds with probability at least 1− δ, the
optimized bounds hold with probability at least 1−54δ. We
compute the bounds with δ = 0.05/54, so the optimized
bounds hold with 95% confidence.

B.3. Additional numerical results

In Table 3, we replace a portion of the data labels with
a randomly chosen label, and study how the proportion
of corrupt data affects our bounds. To make training with
randomized labels more efficient, we use a binarized version
of MNIST where the digits 0, . . . , 4 are combined into one
class and the digits 5, . . . , 9 into another. The results show
that our bounds become vacuous when randomized labels
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Table 3. The estimated training losses, test losses, and correspond-
ing slow-rate (4) and fast-rate (5) bounds on the test loss for LeNet-
5 trained on binarized MNIST with partially corrupted labels.

Randomized labels 25% 50% 75% 100%

Training loss 0.106 0.088 0.090 0.081
Test loss 0.216 0.364 0.461 0.494
Slow-rate bound 5.561 9.811 10.45 11.67
Fast-rate bound 44.52 141.0 160.1 200.4
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Figure 5. The dependence of the bounds on the training epoch
when the threshold 0.05 is used to select σ1 and σ2.

are used. The fast-rate bound is significantly worse than its
slow-rate counterpart, which is to be expected: when the
prior and posterior are selected using randomized labels, a
larger discrepancy between them arises. This increases the
value of the KL divergence in (4) and (5), which penalizes
the fast-rate bound. We note that the qualitative behavior of
the bounds is in agreement with the empirically evaluated
test error: an increased proportion of randomized labels,
and thus an increased test error, increases our bounds.

In Figure 5 and Figure 6, we use SGD with momentum and
investigate the role of the variances σ1 and σ2 by varying the
threshold used to select them. Specifically, in Figure 5, we
set the threshold used to determine σ1 and σ2 to 0.05, which
leads to small values for σ1 and σ2. In Figure 6, we use a
threshold of 0.15 instead, which allows for larger variances.
The results confirm the intuition that larger variances yield
better test-loss bounds at the cost of a higher test error.

Finally, in Figure 7 and Figure 8, we investigate the n-
dependence of our bounds for a 6002 FCNN. In Figure 7,
we train a 6002 FCNN on MNIST, and in Figure 8, we
consider Fashion-MNIST. The resulting bounds are slightly
weaker than in Figure 1 and 2, where LeNet-5 is used, but
the overall behavior is very similar.
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Figure 6. The dependence of the bounds on the training epoch
when the threshold 0.15 is used to select σ1 and σ2.

0.5 1 1.5 2 2.5 3

·104

0

0.2

0.4

0.6

0.8

1

Training set size n

C
la

ss
ifi

ca
tio

n
er

ro
r
Slow-rate bound
Fast-rate bound

Test loss
Training loss

Figure 7. Same as Figure 1, but for a 6002 FCNN.
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Figure 8. Same as Figure 2, but for a 6002 FCNN.


